Diesel Exhaust Fluid Not So Bad - Engine Builder Magazine

Diesel Exhaust Fluid Not So Bad

I often hear comments from people about a strange and mysterious fluid called DEF (Diesel Exhaust Fluid) that is used in some late-model diesel trucks. Many owners of these newer diesel-powered vehicles don’t know what DEF is or why they have a separate tank or even how often to add the stuff. And what exactly is it made of (Hint: it’s not urine!)?

 
The use of DEF in diesel trucks is based soley on its ability to help manufacturers meet today’s tougher diesel emissions standards. With the emission devices of the ’70 and ’80s still a bad memory for many, these devices robbed power, made vehicles more difficult and costly to repair, and ultimately led to the increased prices of vehicles.

 
One thing you have to remember, however, is that back then diesel engines were exempt from these rules and regulations. Diesel engines that were found in automobiles were never really in demand, and they didn’t make much power either. One positive thing about them was the fact that they generally got great fuel mileage and were in service a very long time.

 
As time has passed and we’ve learned a lot more about emissions devices, it really isn’t a sore subject among consumers anymore. In fact, with the power and reliability along with fuel mileage of today’s automobiles, no one really complains.

 
However, as diesel engines become more regulated there tends to be some flashbacks to the past. With this being said, I want to explain the use of DEF in diesel applications to help ease some concerns that may be holding your customers back from their next diesel truck purchase.

 
DEF is a mixture of urea, not a mixture of urine. I realize this is not science class, but it’s nice to understand what urea really is. Natural urea is waste excreted by humans and other mammals from metabolizing protein.  In humans, the liver breaks down protein and ammonia that forms the waste urea. The kidneys then transfer the urea from the blood to the urine.

 
The average person can excrete 30 grams of urea a day, mostly from urine and some through perspiration. DEF, however, is made from a synthetic urea. It is produced from a compound of ammonia and carbon dioxide manufactured for uses such as animal feed and fertilizer.

 
DEF is used to reduce the levels of nitrogen oxides, know as NOx. Nitrogen oxide is formed in an internal combustion engine from the reaction of nitrogen and oxygen during the combustion process. The NOx causes air pollution and in bigger cities is a major contributor of greenhouse gas.

 
NOx gas has been one of the major concerns for the EPA, which has been tightening emission standards for diesel engines in the last few years. Because a diesel engine has a leaner stoichiometry (air/fuel ratio), it tends to produce more NOx than other fuels. The use of DEF to lower NOx gas is known as SCR (Selective Catalytic Reduction). DEF is one way manufacturers have reacted to new emission requirements to lower NOx.

 
How the System Works

The DEF fluid is a mixture of 32.5% high-purity synthetic urea and 67.5% deionized water. The solution is added to a tank on the vehicle that is located generally near the fuel tank for convenience. The DEF tank has a blue lid where the fuel tank has a green lid. The DEF fluid is transferred from the tank to an injector via a pump.

 
The injector for the DEF fluid is usually placed downstream (after turbo) in the exhaust system. The injector is operated electronically by a controller that will open it to allow a low dose of DEF into the exhaust stream. The controller for the injection of DEF is programmed to inject the right amount of fluid based on inputs from the engine controller.

 
As engine demands change, the amount of DEF will change depending on engine load, rpm, speed, temperature, etc. When the DEF is injected into the exhaust stream, it becomes a catalyst for the NOx. The NOx level is reduced between 70% and 90% based on application.

 
Here’s the beauty of SCR: by using urea, more NOx gas can be reduced than other treatments, which has always been a major issue when trying to reduce diesel emissions. This is why the EGR valve system was placed on diesel engines.

 
The EGR?was used to revert exhaust gas back into the intake in order to lower the oxygen content of the the incoming charge of air into the engine. When the oxygen level is reduced, the combustion temperature is also lowered.

 
In a diesel, when the combustion temperature is reduced, you begin to form soot instead. Then soot becomes an issue in the intake manifold along with the rest of the exhaust system. When the soot particulate had to be dealt with, manufacturers began incorporating an expensive solution known as a DPF (Diesel Particulate Filter).

 
This is known as a regeneration process where the soot is collected in a filter in the exhaust system and then later burned off by injecting fuel to clean the filter. But naturally, this creates higher fuel consumption.

 
By incorporating the use of SCR, NOx levels can be maintained while producing more power. Then the manufacturers rely less on other emission devices such as the EGR and DPF. So, more power can be made with less pollution. This is one of the reason today’s diesel engines can make almost twice the power on the same platform.

 
Injection timing can be tailored to make power instead of being altered to produce less NOx and deal with cooler combustion temperatures faced with EGR. Reflecting back, EGR systems have caused their share of problems. Look at the Ford 6.0L diesel and the problems the EGR coolers impose on those engines. So the use of DEF has proven to be a positive, low-cost solution to lower emissions while offering more power and reliability.
A sample can be taken from the DEF tank where the disc in the tester will measure the concentration of urea. If the concentration of urea is off by as little as 0.7%, replace the urea and determine why the urea concentrations were low.

 

You May Also Like

The Road to AAPEX Season 2, Ep 1

Last year, the idea was simple: Find a junker, fix it up with the best from the automotive aftermarket, and drive it to Las Vegas for AAPEX 2022. This year, it’s anything but simple. The automotive aftermarket is at the crossroads of change. Electric vehicles, driver assistance systems, autonomous vehicles, sustainability—it’s a shifting landscape. This

Last year, the idea was simple: Find a junker, fix it up with the best from the automotive aftermarket, and drive it to Las Vegas for AAPEX 2022. This year, it’s anything but simple.

The automotive aftermarket is at the crossroads of change. Electric vehicles, driver assistance systems, autonomous vehicles, sustainability—it’s a shifting landscape. This year, the Big Bosses at AAPEX, Bill Hanvey, president and CEO of Auto Care Association, and Paul McCarthy, president and CEO of MEMA Aftermarket, offered a challenge. Babcox Media’s Joe Keene, an ASE-certified technician, couldn’t refuse: Find and fix a rare Lincoln Blackwood and drive it down the Lincoln Highway to AAPEX 2023.

What’s a Ford Sidevalve Engine?

It looks like an ordinary inline 4-cylinder flathead engine. Essentially it is, but it has quite a cult following here in the UK.

The Drag & Drive Revolution

Following that first drag-and-drive event back in 2005, spinoffs of Drag Week have been happening all over the country, and the world, both large and small. In recent years, the trend has been completely blowing up!

The Evolution of Pro Mod Diesels

The advancements within the performance diesel world over the past 20 years have been nothing short of phenomenal. In fact, within just the last five to 10 years, that progress has been even more rapid and impressive, but few progressions have been more astonishing than those within the Pro Mod Diesel realm.

Top Fuel and Funny Car Engines

They’re the pinnacle of drag racing, and the engine builders, crew chiefs and teams who make these cars function at peak performance all season long are looking at every single area of the engine and the car to make it down the track as fast as possible.

Other Posts

Race Oils

Choosing the correct performance racing oil is essential to ensure optimal performance and longevity of your engine.

Facts About Engine Bearings

The experts all agree that cleanliness is the most important factor during installation, and the lack thereof is the most common problem that leads to bearing failure. But measuring is just as critical.

Does Connecting Rod Length Matter?

Over the years, we’ve gotten asked numerous times about connecting rod length and the impact that has on an engine’s horsepower and durability. As it turns out, this question is often overthought. It’s not so much the connecting rod length that matters as much as it is the correct piston pin height. The connecting rod

LTR Engine Build

This Late Model Engines build is centered around Concept Performance’s new LTR block, which is the first aftermarket as-cast aluminum Gen V LT block.